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Abstract
In the non-Abelian tensor gauge field theory a lower-rank field is represented
by a general nonsymmetric tensor and describes the propagation of charged
bosons of helicities two and zero. We clarify and prove this result from
different perspectives which would include generalized Bianchi identities and
the analysis of the corresponding partial differential equation. We suggest a new
method for counting propagating modes in general gauge field theories. We
derive also the expression for the energy–momentum tensor and confirm that
its nonzero components get contribution only from helicity-two and helicity-
zero states. We extended this analysis considering the interaction between two
currents caused by the exchange of a tensor gauge field and proved that the
residue at the pole is the sum of three terms each of which describes positive
norm polarizations of helicity-two and helicity-zero bosons.

PACS numbers: 11.15.−q, 14.70.−e, 14.70.Pw, 11.30.Ly, 11.15.Bt, 12.60.−i

1. Introduction

An infinite tower of massive particles of high spin naturally appears in the spectrum of different
string field theories [1–7]. It is generally expected that in the tensionless limit or, what is
equivalent, at high-energy and fixed-angle scattering [8–10] the string spectrum becomes
effectively massless and it is of great importance to find out the corresponding Lagrangian and
its genuine symmetries [11–18].

In quantum field theory, the Lagrangian of free massless Abelian tensor gauge fields has
been formulated in [19–29]. The problem of introducing interactions appears to be much more
complex and there has been important progress in defining self-interaction of higher-spin fields
[30–41].

A possible extension of the gauge principle which defines the interaction of non-Abelian
tensor gauge fields has been made recently in [42]. Recall that non-Abelian gauge fields
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are defined as rank-(s + 1) tensor gauge fields Aa
µλ1···λs

1 and that one can construct infinite
series of forms Ls(s = 1, 2, . . .) and L′

s(s = 2, 3, . . .) which are invariant with respect to
the extended gauge transformations [42]. These forms are quadratic in the field strength
tensors Ga

µν,λ1···λs
. The resulting gauge-invariant Lagrangian defines cubic and quartic self-

interactions of charged gauge quanta carrying a spin larger than one [42–46]. The gauge-
invariant Lagrangian describing dynamical tensor gauge bosons of all ranks has the form
[42–44]

L = L1 + g2L2 + g′
2L′

2 + · · · , (1.1)

where L1 is the Yang–Mills Lagrangian. For the lower-rank tensor gauge fields the Lagrangian
has the following form [42–44]:

L1 = − 1
4Ga

µνG
a
µν,

L2 = −1
4Ga

µν,λG
a
µν,λ − 1

4Ga
µνG

a
µν,λλ, (1.2)

L′
2 = + 1

4Ga
µν,λG

a
µλ,ν + 1

4Ga
µν,νG

a
µλ,λ + 1

2Ga
µνG

a
µλ,νλ,

where the generalized field strength tensors are

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gf abcAb

µAc
ν,

Ga
µν,λ = ∂µAa

νλ − ∂νA
a
µλ + gf abc

(
Ab

µAc
νλ + Ab

µλA
c
ν

)
,

Ga
µν,λρ = ∂µAa

νλρ − ∂νA
a
µλρ + gf abc

(
Ab

µAc
νλρ + Ab

µλA
c
νρ + Ab

µρA
c
νλ + Ab

µλρA
c
ν

) · · · .
(1.3)

The definition of the Lagrangian forms Ls and L′
s for higher-rank fields can be found in the

previous publications [42–44]. The above expressions define interacting gauge field theory
with infinite many gauge fields. Not much is known about physical properties of such gauge
field theories and in the present paper we shall focus our attention on the lower-rank tensor
gauge field Aa

µλ, which in this theory is a general nonsymmetric tensor with 4 × 4 = 16
spacetime components (or d × d = d2 in d-dimensions)2.

Each term in the Lagrangian (1.1) is separately gauge invariant; therefore, extended gauge
invariance does not fix the value of the parameters gs and g′

s . It has been found that if g′
2 = g2

in (1.1) the quadratic part of the Lagrangian L for the field Aa
µλ describes the propagation of

helicity-two and helicity-zero λ = ±2, 0 charged gauge bosons [42–44]. Otherwise if one
takes g′

2 �= g2 then there will be negative norm states in the spectrum. To find out why it
happens is our main concern in this paper.

In the following two sections we analyze this question from different perspectives which
would include generalized Bianchi identities for the field strength tensor Ga

µν,λ1···λs
and the

direct analysis of the partial differential equation which describes in this theory the propagation
of the tensor gauge field Aa

µλ. For that we suggested a new method for counting propagating
modes in general gauge field theories in the form of equation (3.7) and shall apply it to the
tensor gauge field theory. This clarifies and proves that the second-rank tensor gauge field
Aa

µλ describes three polarizations λ = ±2, 0 only when g′
2 = g2.

In section 4, we derive the expression for the energy–momentum tensor (4.11), (4.16) and
confirm that its nonzero components get contribution only from helicity-two and helicity-zero
states.

In section 5, we extend this analysis to the interaction of two tensor currents caused by
the exchange of tensor gauge bosons and prove that the residue at the pole is the sum of three
terms each of which describes positive norm polarizations of helicities λ = ±2, 0.
1 Tensor gauge fields Aa

µλ1 ···λs
(x), s = 0, 1, 2, . . . are totally symmetric with respect to the indices λ1 · · · λs . A

priori the tensor fields have no symmetries with respect to the first index µ. In particular we have Aa
µλ �= Aa

λµ and

Aa
µλρ = Aa

µρλ �= Aa
λµρ . The adjoint group index a = 1, . . . , N2 − 1 in the case of SU(N) gauge group.

2 One should multiply these numbers by the dimension of the gauge group, N2 − 1 in the case of SU(N).
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2. Gauge symmetries and current conservation

The Lagrangian (1.1), (1.2) can be represented as a sum of two terms,

L = K + Lint,

where the first term is quadratic in fields and the second one defines the cubic and quartic
interaction of fields. To analyze the particle spectrum of the theory we have to consider the
kinetic term K; therefore, we shall take the coupling constant g equal to zero in (1.3). As
it follows from (1.2) the kinetic term describing the propagation of the tensor gauge field
Aa

µλ �= Aa
λµ has the following form [42–44]:

K = g2
(− 1

4Fa
µν,λF

a
µν,λ

)
+ g′

2

(
1
4Fa

µν,λF
a
µλ,ν + 1

4Fa
µν,νF

a
µλ,λ

)
, (2.1)

where

Fa
µν,λ = ∂µAa

νλ − ∂νA
a
µλ. (2.2)

It is invariant with respect to the gauge transformation δ,

δAa
µλ = ∂µξa

λ , (2.3)

because δξF
a
µν,λ = 0. When g2 = g′

2,K becomes invariant also with respect to the
complementary gauge transformation δ̃ [44],

δ̃Aa
µλ = ∂λη

a
µ. (2.4)

The field strength tensor Fa
µν,λ (2.2) transforms with respect to this transformation as follows:

δ̃ηF
a
µν,λ = ∂λ

(
∂µηa

ν − ∂νη
a
µ

)
. (2.5)

The kinetic termK is obviously invariant with respect to the first group of gauge transformations
δK = 0, but it is less trivial to see that it is also invariant with respect to the complementary
gauge transformations δ̃. The δ̃ transformation of K is

δ̃K = − 1
2Fa

µν,λ∂λ

(
∂µηa

ν − ∂νη
a
µ

)
+ 1

2Fa
µν,λ∂ν

(
∂µηa

λ − ∂λη
a
µ

)
+ 1

2Fa
µν,ν∂λ

(
∂µηa

λ − ∂λη
a
µ

)
= 1

2Fa
µν,λ∂λ∂νη

a
µ + 1

2Fa
µν,ν∂λ

(
∂µηa

λ − ∂λη
a
µ

)
,

where we combined the first, the second and the fourth terms and used the fact that the third
term is identically equal to zero. Just from the symmetry properties of the field strength tensor
it is not obvious why the rest of the terms are equal to zero. Therefore we shall use the explicit
form of the field strength tensor Fa

µν,λ, which gives

δ̃K = 1
2

(
∂µAa

νλ − ∂νA
a
µλ

)
∂λ∂νη

a
µ + 1

2

(
∂µAa

νν − ∂νA
a
µν

)
∂λ

(
∂µηa

λ − ∂λη
a
µ

)
.

From the corresponding action S0 = ∫
K dx, after partial differentiation we shall get that the

term ∂µAa
νν · ∂λ

(
∂µηa

λ − ∂λη
a
µ

)
gives a zero contribution and the rest of the terms cancel each

other
∫ (

1
2 (∂µAa

νλ − ∂νA
a
µλ

) · ∂λ∂νη
a
µ − 1

2∂νA
a
µν · ∂λ

(
∂µηa

λ − ∂λη
a
µ

))
dx = 0. This demonstrates

the invariance of K with respect to δ and δ̃ transformations when g2 = g′
2 in (1.1) [42].

Let us now consider the interaction of the tensor gauge field Aa
µλ defined by the total

Lagrangian (1.1), (1.2). In order to see what type of restrictions are imposed on the interaction
we shall consider the full equation of motion when g �= 0. It follows from the Lagrangian
(1.1) that

∂µF a
µν,λ − 1

2

(
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

) = J a
νλ(g,A), (2.6)

where all terms containing a coupling constant g are written on the lhs, see [42–44] for details.
This equation contains two terms ∂µF a

µν,λ and − 1
2

(
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ +ηνλ∂µF a

µρ,ρ

)
,

which arise from L2 and L′
2 respectively. The derivatives over ∂ν of both terms in the equation

3
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are equal to zero separately. Indeed, due to the antisymmetric properties of the field strength
tensor Fa

µν,λ under the exchange of µ and ν we have

∂ν∂µF a
µν,λ = 0,

as well as

− 1
2∂ν

{
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

} = 0.

Thus it follows from (2.6) that

∂νJ
a
νλ = 0. (2.7)

Hence, the current J a
νλ must be divergenceless over its first index. Now, let us take derivative

over ∂λ of the lhs of equation (2.6), that is, the derivative over the second index of the
nonsymmetric current J a

νλ. We see that

∂λ∂µF a
µν,λ �= 0,

as well as

− 1
2∂λ

{
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

}
= − 1

2∂λ

{
∂µF a

λν,µ + ∂λF
a
µν,µ + ηνλ∂µF a

µρ,ρ

} �= 0.

Thus, it is not obvious to see the conservation of the nonsymmetric current J a
νλ with respect

to its second index λ. Therefore we have to use the explicit form of the field strength tensor
Fa

µν,λ = ∂µAa
νλ − ∂νA

a
µλ, this gives

∂λ∂µF a
µν,λ − 1

2∂λ

{
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

}
= ∂λ∂µF a

µν,λ − 1
2∂λ∂µF a

λν,µ − 1
2∂2Fa

µν,µ − 1
2∂ν∂µF a

µρ,ρ

= 1
2∂λ∂µ

(
∂µAa

νλ − ∂νA
a
µλ

) − 1
2∂2

(
∂µAa

νµ − ∂νA
a
µµ

)
− 1

2∂ν∂µ

(
∂µAa

ρρ − ∂ρA
a
µρ

) = 0.

Therefore the sum of the two nonzero expressions presented above are equal to zero, thus
[42–44]

∂λJ
a
νλ = 0. (2.8)

The natural question which arises here is connected with the fact that in order to see these
cancelations one should use the explicit form of the field strength tensor Fa

µν,λ, and it remains
a mystery, why this takes place only when the relative coefficient between the invariant forms
L2 and L′

2 is equal to one (g2 = g′
2 in (1.1)) [42].

Our main concern therefore is to understand the general reason for these cancelations
without referring to the explicit form of the field strength tensor. As we shall see, the deep
reason for these cancelations lies in the Bianchi identity (A.4), (A.5) for the free-field strength
tensor

∂µF a
νλ,ρ + ∂νF

a
λµ,ρ + ∂λF

a
µν,ρ = 0, (2.9)

which we shall derive in appendix A. Indeed, we can evaluate the derivative of the lhs of
equation (2.6) to the following form:

∂λ

{
∂µF a

µν,λ − 1
2

(
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

)}
= − 1

2

{
∂2Fa

µν,µ + ∂µ∂νF
a
µρ,ρ + ∂µ∂λF

a
νλ,µ

}
, (2.10)

where we have used only the antisymmetric property of Fµν,λ to cancel the second term and
to combine the first one with the third one of the lhs of the above equation. Now, we shall take
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advantage of the Bianchi identity. Taking the derivative of the Bianchi identity (2.9) over ∂µ

and setting ν = ρ we get

∂2Fa
µν,µ + ∂µ∂νF

a
µρ,ρ + ∂µ∂λF

a
νλ,µ ≡ 0 (2.11)

and can clearly see that the last expression in (2.10) coincides with the lhs of this contracted
Bianchi identity and is therefore equal to zero. Thus (2.8) holds, ∂λJ

a
νλ = 0.

In other words, if one repeats these calculations for arbitrary coefficients g2 and g′
2 in the

Lagrangian (1.1) g2L2 +g′
2L′

2, then the last expression in parentheses (2.10) will take the form

∂2Fa
µν,µ + ∂µ∂νF

a
µρ,ρ +

(
2
g2

g′
2

− 1

)
∂µ∂λF

a
νλ,µ.

Comparing it with the Bianchi identity (2.11) one can see that it is equal to zero only if g2 = g′
2

and therefore only in that case (2.8) holds.
It seems that this situation is similar to that in gravity, where both tensors Rµν and gµνR

have correct transformation properties and therefore can be present in the equation of motion
[51]

Rµν − cgµνR = Tµν (2.12)

with unknown coefficient c, but the Bianci identity R
µ

ν;µ−(1/2)R;ν = 0 tells that the coefficient
c should be taken equal to 1/2 [52].

In the following section, we shall present a general method for counting propagating
modes in gauge field theories. The number of propagating modes can be expressed in the
form (3.7). This method does not require gauge fixing, it simply gives a general solution of
the partial differential equation.

3. Counting propagating modes

As we have seen above, the equation of motion (2.6) which describes the propagation and
the interaction of the second-rank tensor gauge field (Aa

µλ �= Aa
λµ) has the following form3

[42–44]:

∂µF a
µν,λ − 1

2

(
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a µ
µν, + ηνλ∂

µF aρ
µρ,

) = J a
νλ(g,A), (3.1)

where Fa
µν,λ = ∂µAa

νλ − ∂νA
a
µλ. The equivalent form of the equations of motion (2.6) in terms

of the gauge field is [42–44]

∂2
(
Aa

νλ − 1
2Aa

λν

) − ∂ν∂
µ
(
Aa

µλ − 1
2Aa

λµ

) − ∂λ∂
µ
(
Aa

νµ − 1
2Aa

µν

)
+ ∂ν∂λ

(
Aa µ

µ − 1
2Aa µ

µ

)
+ 1

2ηνλ

(
∂µ∂ρAa

µρ − ∂2Aa µ
µ

) = J a
νλ(g,A). (3.2)

In momentum space this type of second-order partial differential equations can always be
represented as matrix equation of the following general form:

Hαά
γ γ́ (k)Aa

γ γ́ = J a
αά, (3.3)

where Hαά
γ γ́ (k) is a matrix operator quadratic in momentum kµ. In our case it has the

following form [42–44]:

Hαάγ γ́ (k) = (−ηαγ ηάγ́ + 1
2ηαγ́ ηάγ + 1

2ηαάηγ γ́

)
k2 + ηαγ kάkγ́ + ηάγ́ kαkγ

− 1
2 (ηαγ́ kάkγ + ηάγ kαkγ́ + ηαάkγ kγ́ + ηγ γ́ kαkά), (3.4)

3 From now on the Lorentz indices of the tensor fields are raised and lowered with flat spacetime metric
ηµν = (−1, 1, 1, 1).
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with the property that Hαάγ γ́ = Hγ γ́αά . First of all, we shall solve the equation in the case
when there are no interactions, J a

αά = 0,

Hαά
γ γ́ (k)Aa

γ γ́ = 0. (3.5)

The vector space of independent solutions Aγ γ́ of this system of equations crucially depends
on the rank of the matrix Hαά

γ γ́ (k). If the matrix operator H has dimension d × d and its rank
is rank H = r , then the vector space has the dimension

N = d − r.

Because the matrix operator Hαά
γ γ́ (k) explicitly depends on the momentum kµ, its rank H = r

also depends on momenta and therefore the number of independent solutions N depends on
momenta

N (k) = d − r(k). (3.6)

Analyzing the rank H of the matrix operator H one can observe that it depends on the value
of momentum square k2

µ. When k2
µ �= 0—off mass-shell momenta—the vector space consists

of pure gauge fields. When k2
µ = 0—on mass-shell momenta—the vector space consists of

pure gauge fields and propagating modes. Therefore the number of propagating modes can
be calculated from the following relation:

number of propagating modes = N (k)|k2=0 − N (k)|k2 �=0 = rank H |k2 �=0 − rank H |k2=0.

(3.7)

Before considering the equation of motion for the tensor gauge field (3.5), let us consider for
illustration some important examples.

3.1. Vector gauge field

The kinetic term of the Lagrangian which describes the propagation of a free vector gauge
field is

K = − 1
4FµνF

µν (3.8)

and the corresponding equation of motion in the momentum space is

Hα
γ eγ = (−k2δγ

α + kαkγ
)
eγ = 0, (3.9)

where Aµ = eµ exp (ikx). We can always choose the momentum vector in the third direction
kµ = (ω, 0, 0, k) and the matrix operator H takes the form

Hα
γ =

⎛
⎜⎜⎝

−k2 0 0 −kω

0 ω2 − k2 0 0
0 0 ω2 − k2 0

kω 0 0 ω2

⎞
⎟⎟⎠ .

If ω2 − k2 �= 0, the rank of the four-dimensional matrix Hα
γ is rank H |ω2−k2 �=0 = 3 and the

number of independent solutions is 4−3 = 1. As one can see from the relation Hα
γ (k)kγ = 0

this solution is proportional to the momentum eµ = kµ = (−ω, 0, 0, k) and is a pure gauge
field. This is a consequence of the gauge invariance of the theory eµ → eµ + akµ. If
ω2 − k2 = 0, then the rank of the matrix drops, rank H |ω2−k2=0 = 1, and the number of
independent solutions increases: 4 − 1 = 3. These three solutions of equations (3.9) are

e(gauge)
γ = 1√

2

⎛
⎜⎜⎝

−1
0
0
1

⎞
⎟⎟⎠ , e(1)

γ =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , e(2)

γ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ,

6
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from which the first one is a pure gauge field (∼kγ ), while the remaining two are the physical
modes, perpendicular to the direction of the momentum. The general solution at ω2 − k2 = 0
will be a linear combination of these three eigenvectors,

eγ = akγ + c1e
(1)
γ + c2e

(2)
γ ,

where a, c1, c2 are arbitrary constants. We see that the number of propagating modes is

rank H |ω2−k2 �=0 − rank H |ω2−k2=0 = 3 − 1 = 2,

as it should be.

3.2. Symmetric tensor gauge field

The free gravitational field is described in terms of a symmetric second-rank tensor field hµν

and is governed by the Einstein and Pauli–Fierz equation,

∂2hνλ − ∂ν∂
µhµλ − ∂λ∂

µhµν + ∂ν∂λh
µ
µ + ηνλ

(
∂µ∂ρhµρ − ∂2hµ

µ

) = 0, (3.10)

which is invariant with respect to the gauge transformations

δhµλ = ∂µξλ + ∂λξµ (3.11)

that respects the symmetry properties of Aµν . The corresponding matrix operator is

Hαάγ γ́ (k) = {
ηαάηγ γ́ − 1

2 (ηαγ ηάγ́ + ηαγ́ ηάγ )
}
k2 − ηαάkγ kγ́ − ηγ γ́ kαkά

+ 1
2 (ηαγ́ kγ kά + ηάγ́ kαkγ + ηαγ kάkγ́ + ηάγ kαkγ́ ) (3.12)

and is a 10 × 10 matrix in four-dimensional spacetime with the property Hαάγ γ́ = Hάαγ γ́ =
Hαάγ́ γ = Hγ γ́αά and is presented in appendix B.

If ω2 − k2 �= 0, the rank of the ten-dimensional matrix Hαά
γ γ́ (k) is equal to

rank H |ω2−k2 �=0 = 6 and the number of independent solutions is 10 − 6 = 4. These four
symmetric solutions are pure gauge tensor fields. Indeed, if again we choose the coordinate
system so that kγ = (ω, 0, 0, k), then one can find the following four linearly independent
solutions:

eγ γ́ =

⎛
⎜⎜⎝

−ω2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 −ω 0 0
−ω 0 0 k

0 0 0 0
0 k 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 −ω 0
0 0 0 0

−ω 0 0 k

0 0 k 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−2ω 0 0 k

0 0 0 0
0 0 0 0
k 0 0 0

⎞
⎟⎟⎠ ,

(3.13)

pure gauge field solutions of the form (3.11) eγ γ́ = kγ ξγ́ + kγ́ ξγ as one can see from the
relation

Hαά
γ γ́ (k)(kγ ξγ́ + kγ́ ξγ ) = 0. (3.14)

When ω2 − k2 = 0, then the rank of the matrix Hαάγ γ́ (k) drops and is equal to
rank H |ω2−k2=0 = 4. This leaves us with 10 − 4 = 6 solutions. These are the four pure gauge
solutions (3.11) and two additional symmetric solutions representing propagating modes: the
helicity states of the graviton

e
(1)
γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ , e

(2)
γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ . (3.15)
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Thus the general solution of the equation on mass shell is

eγ γ́ = ξγ kγ́ + ξγ́ kγ + c1e
(1)
γ γ́ + c2e

(2)
γ γ́ ,

where c1, c2 are arbitrary constants. We see that the number of propagating modes is

rank H |ω2−k2 �=0 − rank H |ω2−k2=0 = 6 − 4 = 2,

as it should be.

3.3. Antisymmetric tensor gauge field

The antisymmetric second-rank tensor field Bµν is governed by the equation [47–50]

∂2Bνλ − ∂ν∂
µBµλ + ∂λ∂

µBµν = 0, (3.16)

which is invariant with respect to the gauge transformations

δBµλ = ∂µηλ − ∂ληµ (3.17)

that respects the symmetry properties of Bµν . The corresponding matrix operator is

Hαάγ γ́ (k) = − 1
2 (ηαγ ηάγ́ − ηαγ́ ηάγ )k2

− 1
2 (ηαγ́ kγ kά − ηάγ́ kαkγ + ηάγ kαkγ́ − ηαγ kάkγ́ ) (3.18)

and is 6 × 6 matrix in four-dimensional spacetime with the property Hαάγ γ́ = −Hάαγ γ́ =
−Hαάγ́ γ = Hγ γ́αά and is presented in appendix B.

If ω2 − k2 �= 0, the rank of the six-dimensional matrix Hαά
γ γ́ (k) is equal to

rank H |ω2−k2 �=0 = 3 and the number of independent solutions is 6 − 3 = 3. These
three antisymmetric solutions are pure gauge fields. Indeed, in the coordinate system
kγ = (ω, 0, 0, k), one can find the following three solutions:

eγ γ́ =

⎛
⎜⎜⎝

0 0 ω 0
0 0 0 0

−ω 0 0 k

0 0 −k 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 ω 0 0
−ω 0 0 k

0 0 0 0
0 −k 0 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

− 1 0 0 0

⎞
⎟⎟⎠ , (3.19)

pure gauge fields of the form (3.17) eγ γ́ = kγ ηγ́ − kγ́ ηγ , as one can see from the relation

Hαά
γ γ́ (k)(kγ ηγ́ − kγ́ ηγ ) = 0. (3.20)

When ω2 − k2 = 0, then the rank of the matrix Hαάγ γ́ (k) drops and is equal to
rank H |ω2−k2=0 = 2. This leaves us with 6 − 2 = 4 solutions. These are the three pure
gauge solutions (3.17) and the antisymmetric solution representing the propagating mode: the
helicity zero state

e
(A)
γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ . (3.21)

Thus on the mass shell the general solution of the equation is

eγ γ́ = kγ ηγ́ − kγ́ ηγ + c3e
(A)
γ γ́ ,

where c3 is an arbitrary constant. We see that the number of propagating modes is

rank H |ω2−k2 �=0 − rank H |ω2−k2=0 = 3 − 2 = 1.

After this parenthetic discussion we shall turn to the tensor gauge theory.
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3.4. Non-Abelian tensor gauge field

Now we are ready to consider equation (3.5) for the tensor gauge field Aµλ with the matrix
operator (3.4) which, in four-dimensional spacetime, is a 16 × 16 matrix. In the reference
frame, where kγ = (ω, 0, 0, k), it has the form presented in appendix B.

If ω2 − k2 �= 0, the rank of the 16-dimensional matrix Hαά
γ γ́ (k) is equal to

rank H |ω2−k2 �=0 = 9 and the number of linearly independent solutions is 16 − 9 = 7. These
seven solutions are

eγ γ́ =

⎛
⎜⎜⎝

−ω2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ω 0 0 0
0 0 0 0
0 0 0 0
k 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 ω 0 0
0 0 0 0
0 0 0 0
0 k 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 ω 0
0 0 0 0
0 0 0 0
0 0 k 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ω 0 0 k

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
ω 0 0 k

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
ω 0 0 k

0 0 0 0

⎞
⎟⎟⎠

(3.22)

pure gauge tensor potentials of the form (2.3) and (2.4)

eγ γ́ = kγ ξγ́ + kγ́ ηγ (3.23)

as one can get convinced from the relation

Hαά
γ γ́ (k)(kγ ξγ́ + kγ́ ηγ ) = 0, (3.24)

which follows from the gauge invariance of the action and can be checked also explicitly.
When ω2 − k2 = 0, then the rank of the matrix Hαάγ γ́ (k) drops and is equal to

rank H |ω2−k2=0 = 6. This leaves us with 16−6 = 10 solutions. These are seven solutions, the
pure gauge potentials (3.22), (3.23) and new three solutions representing propagating modes,

e
(1)
γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , e

(2)
γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ , eA

γ γ́ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ . (3.25)

Thus the general solution of the equation on the mass shell is

eγ γ́ = ξγ́ kγ + ηγ kγ́ + c1e
(1)
γ γ́ + c2e

(2)
γ γ́ + c3e

(A)
γ γ́ , (3.26)

where c1, c2, c3 are arbitrary constants. We see that the number of propagating modes is three

rank H |ω2−k2 �=0 − rank H |ω2−k2=0 = 9 − 6 = 3.

These are propagating modes of helicity-two and helicity-zero λ = ±2, 0 charged gauge
bosons [42–44]. Indeed, if we make a rotation around the z-axis,

� =
(

cos θ −sin θ

sin θ cos θ

)
,

we get

e(1)′ = �e(1)�T =
(−cos 2θ −sin 2θ

−sin 2θ cos 2θ

)
, e(2)′ = �e(2)�T =

(−sin 2θ cos 2θ

cos 2θ sin 2θ

)
,

therefore the first two solutions describe helicity λ = ±2 states. On the other hand, the
third, antisymmetric solution remains invariant under the Lorentz transformations; therefore
it describes the helicity-zero state.

9
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4. Energy–momentum tensor

We would like to consider the contribution of the general solution (3.26) into the energy–
momentum of the tensor gauge field theory. This will test from another point of view the
unitarity of the theory. One can expect that only transverse propagating modes

eγ γ́ ∼ c1e
(1)
γ γ́ + c2e

(2)
γ γ́ + c3e

(A)
γ γ́ (4.1)

will contribute to the energy–momentum of the gauge fields and that the longitudinal, pure
gauge fields,

eγ γ́ ∼ ξγ́ kγ + ηγ kγ́ , (4.2)

will have no contribution. Let us first begin with the free theory g = 0. The free Lagrangian
has the form (2.1)

K = − 1
4Fa

µν,λF
a
µν,λ + 1

4Fa
µν,λF

a
µλ,ν + 1

4Fa
µν,νF

a
µλ,λ (4.3)

and the equation of motion for the Aµν field is (2.6),

∂µF a
µν,λ − 1

2

(
∂µF a

µλ,ν + ∂µF a
λν,µ + ∂λF

a
µν,µ + ηνλ∂µF a

µρ,ρ

) = 0. (4.4)

By definition, the energy momentum tensor for the Aµν field is

Tµν = ∂µAρσ

∂K
∂(∂νAρσ )

− ηµνK. (4.5)

In order to calculate the term ∂L
∂(∂νAρσ )

we need the expression for the derivative of the field
strength tensor,

∂Fµλ,τ

∂(∂νAρσ )
= (ηµνηρλ − ηλνηρµ)ηστ ;

hence it is easy to see that

∂K
∂(∂νAρσ )

= −Fνρ,σ + 1
2 (Fνσ,ρ − Fρσ,ν) + 1

2 (Fνλ,ληρσ − Fρλ,ληνσ )

and finally we shall get

Tµν = −∂µAρσ Fνρ,σ + 1
4ηµνFρσ,τFρσ,τ

+ 1
2∂µAρσ (Fνσ,ρ − Fρσ,ν) − 1

4ηµνFλρ,σFλσ,ρ

+ 1
2 (∂µAσσFνρ,ρ − ∂µAρνFρσ,σ ) − 1

4ηµνFρτ,τFρσ,σ . (4.6)

With the aid of (4.4) one can compute the derivative of the energy–momentum tensor Tµν over
its second index ν and demonstrate that it is zero,

∂νTµν = 0. (4.7)

The energy–momentum tensor is not uniquely defined because one can add any term of the
form ∂ρ�µνρ ,

Tµν → Tµν + ∂ρ�µνρ,

where �µνρ = −�µρν without changing its basic property (4.7) and the total four-momentum
of the system

Pµ =
∫

Tµ0 dV. (4.8)

10
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We can use this freedom to express Tµν solely in terms of the field strength tensor Fµν,λ.
Choosing

�µνρ = AµσFνρ,σ − 1
2 (AµσFνσ,ρ + AµσFσρ,ν + AµρFνλ,λ + AµνFλρ,λ), (4.9)

which fulfills the property �µνρ = −�µρν , and using (4.4) we can get that

∂ρ�µνρ = Fνρ,σ ∂ρAµσ − 1
2 (Fνσ,ρ∂ρAµσ + Fσρ,ν∂ρAµσ + Fνσ,σ ∂ρAµρ + Fσρ,σ ∂ρAµν). (4.10)

The sum of (4.6) and (4.10) gives the final form of the expressed in terms of field strength
tensors,

Tµν = −Fµρ,σFνρ,σ + 1
4ηµνFρσ,τFρσ,τ

+ 1
2 (Fµρ,σFνσ,ρ + Fµρ,σFσρ,ν) − 1

4ηµνFλρ,σ Fλσ,ρ

+ 1
2 (Fµσ,σFνρ,ρ + Fρµ,νFρλ,λ) − 1

4ηµνFρσ,σ Fρλ,λ. (4.11)

It is easy to see that the energy–momentum tensor is traceless,

T = Tµµ = 0, (4.12)

as it should be in a massless and scale invariant theory. As it is also obvious from the final
expression that it is not symmetric Tµν �= Tνµ. This only means that it cannot be used for the
calculation of the angular momentum of the fields (see paragraphs 32 and 96 of [53]).

Now we can calculate the contribution of the general solution (3.26) into the energy and
momentum of the free gauge field. First of all, we can find that

Fµν,λ = i(−kµeνλ + kνeµλ),

where eµν is a general solution (3.26)

eµν = ξνkµ + ηµkν + c1e
(1)
µν + c2e

(2)
µν + c3e

(A)
µν .

Using the following orthogonality relations:

kµkµ = 0, kµeµλ = kλe
µλ = 0

e
(i)
µλe

(j)

µλ = e
(i)
µλe

(j)

λµ = δij , for i, j = 1, 2

e
(A)
µλ e

(A)
µλ = 1, e

(A)
µλ e

(A)
λµ = −1

e
(A)
µλ e

(i)
µλ = e

(A)
µλ e

(i)
λµ = 0, i = 1, 2,

it is straightforward to see that

Tµν = 1
2kµkν

(
c2

1 + c2
2 + 3c2

3

)
. (4.13)

Thus we see that only the transverse propagating modes contribute to the energy–momentum
of the field. As expected no pure gauge fields appear in the expression (4.13).

For completeness let us derive also the expression for the energy–momentum tensor in
the interacting case when g �= 0. The energy–momentum tensor for the full Lagrangian (1.1),
(1.2) is defined as usual,

Tµν = ∂µAa
λ

∂L
∂
(
∂νA

a
λ

) + ∂µAa
λρ

∂L
∂
(
∂νA

a
λρ

) +
1

2
∂µAa

λρσ

(
∂L

∂
(
∂νA

a
λρσ

) +
∂L

∂
(
∂νA

a
λρσ

)
)

− ηµνL.

Note the symmetrization of the second factor of the third term. One can easily derive the
following relations:

∂L
∂(∂νAλ)

= −Ga
νλ + g2

{
−1

2
Ga

νλ,ττ +
1

2

(
Ga

ντ,λτ − Ga
λτ,ντ

)}
,

∂L
∂
(
∂νA

a
λρ

) = g2

{
−Ga

νλ,ρ +
1

2

(
Ga

νρ,λ − Ga
λρ,ν

)
+

1

2

(
Ga

νσ,σ ηλρ − Ga
λ,σσ ηνρ

)}
,

∂L
∂
(
∂νA

a
λρσ

) = g2

{
−1

2
ηρσGa

νλ +
1

2

(
ηλσGa

νρ − ηνσGa
λρ

)}

11
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in order to get

Tµν = ∂µAa
λ

{−Ga
νλ + g2

[− 1
2Ga

νλ,ττ + 1
2

(
Ga

ντ,λτ − Ga
λτ,ντ

)]}
+ g2∂µAa

λρ

{−Ga
νλ,ρ + 1

2

(
Ga

νρ,λ − Ga
λρ,ν

)
+ 1

2

(
Ga

νσ,σ ηλρ − Ga
λ,σσ ηνρ

)}
+ g2

1
2∂µAa

λρσ

{−ηρσ Ga
νλ + 1

2

(
ηλσGa

νρ + ηλρG
a
νσ − ηνσGa

λρ − ηνρG
a
λσ

)} − ηµνL. (4.14)

Again we shall take advantage of the freedom we have to add terms of the form ∂λ�µνλ

with �µνλ = −�µλν , and express Tµν solely in terms of the field strength tensors Ga
µν,

Ga
µν,λ,G

a
µν,λρ . The equations of motion direct our choice of the tensor �µνλ,

�µνλ = Aa
µ

[−Ga
λν + g2

(− 1
2Ga

λν,ρρ + 1
2Ga

λρ,νρ − 1
2Ga

νρ,λρ

)]
+ g2A

a
µρ

[−Ga
λν,ρ + 1

2

(
Ga

λρ,ν − Ga
νρ,λ + ηνρG

a
λσ,σ − ηλρG

a
νσ,σ

)]
+ g2A

a
µρσ

[− 1
2ηρσGa

λν + 1
4

(
ηνσGa

λρ + ηνρG
a
λσ − ηλρG

a
νσ − ηλσGa

νρ

)]
, (4.15)

so that the final expression for the Tµν → Tµν + ∂λ�µνλ is

Tµν = −Ga
µλG

a
νλ + 1

4ηµνG
a
λρG

a
λρ + g2

{−Ga
µλ,ρG

a
νλ,ρ + 1

4ηµνG
a
λρ,σGa

λρ,σ

− 1
2

(
Ga

µλG
a
νλ,ρρ + Ga

µλ,ρρG
a
νλ

)
+ 1

4ηµνG
a
λρG

a
λρ,σ,σ

+ 1
2

(
Ga

µλ,ρG
a
νρ,λ + Ga

λµ,ρG
a
λρ,ν

) − 1
4ηµνG

a
λρ,σ Ga

λσ,ρ

+ 1
2

(
Ga

µρ,ρG
a
νλ,λ + Ga

λρ,ρG
a
λµ,ν

) − 1
4ηµνG

a
λρ,ρG

a
λσ,σ

+ 1
2

(
Ga

µλG
a
νρ,λ,ρ + Ga

λµGa
λρ,νρ + Ga

νλG
a
µρ,λρ + Ga

λρG
a
λµ,ρν

) − 1
2ηµνG

a
λρG

a
λσ,ρσ

}
. (4.16)

It can be easily seen that T = Tµµ = 0 and it reduces to (4.11) when g = 0 and only the
second-rank field is present.

5. Interaction of currents

The interaction amplitude between two tensor currents caused by the exchange of these tensor
gauge bosons can be found from (3.1)–(3.3) and has the following form [44]:

J ′
µλ�

µλνρJνρ, (5.1)

where the propagator �ab
µλνρ is

�ab
µλνρ = δab

ηµνηλρ − 1
2ηµληνρ

ω2 − k2
, (5.2)

therefore

J ′
µλ�

µλνρJνρ = J ′
µλ

1

ω2 − k2
Jµλ − 1

2
J ′µ

µ

1

ω2 − k2
Jλ

λ. (5.3)

We shall evaluate the first term in the interaction amplitude; this gives

J ′
µλ

1

ω2 − k2
Jµλ = 1

ω2 − k2
{J ′

00J00 − J ′
01J01 − J ′

02J02 − J ′
03J03 − J ′

10J10

− J ′
20J20 − J ′

30J30 + J ′
11J11 + J ′

22J22 + J ′
33J33 + J ′

12J12

+ J ′
21J21 + J ′

13J13 + J ′
31J31 + J ′

23J23 + J ′
32J32}.

Taking kµ = (ω, 0, 0, k) and using the conservation of the current (2.7) expressed in the
momentum space

kµJµλ = 0, ωJ0λ = −kJ3λ,

12
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we shall get

1

ω2 − k2

[(
1 − ω2

k2

)
J ′

00J00 −
(

1 − ω2

k2

)
J ′

01J01 −
(

1 − ω2

k2

)
J ′

02J02 −
(

1 − ω2

k2

)
J ′

03J03

− J ′
10J10 − J ′

20J20 + J ′
11J11 + J ′

22J22 + J ′
12J12 + J ′

21J21 + J ′
13J13 + J ′

23J23

]
.

Now using the second conservation law (2.8) in the momentum space

kλJµλ = 0, ωJµ0 = −kJµ3,

we arrive at

1

ω2 − k2

[(
1 − ω2

k2

)
J ′

00J00 −
(

1 − ω2

k2

)
J ′

01J01 −
(

1 − ω2

k2

)
J ′

02J02

−
(

1 − ω2

k2

)
J ′

10J10 −
(

1 − ω2

k2

)
J ′

20J20 −
(

1 − ω2

k2

)(
ω2

k2

)
J ′

00J00

]

+
1

ω2 − k2
[J ′

11J11 + J ′
22J22 + J ′

12J12 + J ′
21J21]

and, after simple algebra, at

− 1

k2

[(
1 − ω2

k2

)
J ′

00J00 − J ′
01J01 − J ′

02J02 − J ′
10J10 − J ′

20J20

]

+
1

ω2 − k2
[J ′

11J11 + J ′
22J22 + J ′

12J12 + J ′
21J21].

Evaluating the second term in the interaction amplitude (5.2) in the same manner as above,
we shall finally get for the total amplitude

− 1

k2

[(
1 − ω2

k2

)
J ′

00J00 − J ′
01J01 − J ′

02J02 − J ′
10J10 − J ′

20J20

]

+
1

ω2 − k2

[
1

2
(J ′

11 − J ′
22)(J11 − J22) + J ′

12J12 + J ′
21J21

]
. (5.4)

For the instantaneous term we get

− 1

k2

[(
1 − ω2

k2

)
J ′

00J00 − J ′
01J01 − J ′

02J02 − J ′
10J10 − J ′

20J20

]
(5.5)

and for the retarded term (J12 �= J21)

1

ω2 − k2

[
1

2
(J ′

11 − J ′
22)(J11 − J22) + J ′

12J12 + J ′
21J21

]
. (5.6)

The retarded term represents a sum of three independent products,

+ 1
4 [J ′

11 − J ′
22 + i(J ′

12 + J ′
21)][J11 − J22 − i(J12 + J21)]

+ 1
4 [J ′

11 − J ′
22 − i(J ′

12 + J ′
21)][J11 − J22 + i(J12 + J21)]

+ 1
2 (J ′

12 − J ′
21)(J

′
12 − J ′

21), (5.7)

or polarizations corresponding to the helicities λ = ±2, 0. Thus all negative-norm states
are excluded from the spectrum of the second-rank tensor gauge field Aµλ, due to the gauge
invariance of the theory and we come to the conclusion that the theory does indeed respect
unitarity at the free level.
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6. Conclusion

In this paper, we are constructing perturbation theory in the coupling constant g. All qualities:
the Lagrangian (1.1) L = K + gM + g2N , the field strength tensors (1.3) G = F + g[A,A],
the Bianchi identities (A.4), the exact equation of motion (3.1) and exact extended gauge
transformations δ and δ̃ can be consistently expanded in powers of g. As a first step, we are
considering the properties of the theory in zero order of g and then its interactions. The above
consideration comprises the complete analysis of the spectrum for the second-rank tensor
gauge field and its tree-level interactions.

The Lagrangian (1.1) contains tensor gauge fields of all ranks. We have here an example
of field theory with infinitely many interacting fields. Our knowledge of such field theories is
limited. What we can do is to study their properties in steps. In particular, we have concentrated
here on lower-rank tensor gauge field. More should be done in order to understand the structure
of the particle spectrum at higher levels.
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Appendix A. Bianchi identity

The non-Abelian tensor fields Aa
µλ1···λs

can be seen as appearing in the expansion of the
extended gauge field Aµ(x, e) over the unit tangent vector eλ [42–44],

Aµ(x, e) =
∞∑

s=0

1

s!
Aa

µλ1···λs
(x)Laeλ1 · · · eλs

.

and the extended field strength tensor can be defined in terms of the extended gauge field
Aµ(x, e) as follows:

Gµν(x, e) = ∂µAν(x, e) − ∂νAµ(x, e) − ig[Aµ(x, e),Aν(x, e)].

Defining the extended covariant derivative: Dµ = ∂µ − igAµ, one can get [44]

[Dµ,Dν] = [∂µ − igAµ, ∂ν − igAν] = −igGµν. (A.1)

The operators Dµ,Dν,Dλ obey Jacobi identity,

[Dµ, [Dν,Dλ]] + [Dν, [Dλ,Dµ]] + [Dλ, [Dµ,Dν]] = 0,

which with the aid of (A.1) is transformed into the generalized Bianchi identity

[Dµ,Gνλ] + [Dν,Gλµ] + [Dλ,Gµν] = 0. (A.2)

Let us now expand equation (A.2) over eρ up to the linear terms. We have

[∂µ − igAµ − igAµρe
ρ,Gνλ + Gνλ,ρe

ρ] + cyc.perm. + O(e2) = 0.

In zero order the above equation gives the standard Bianchi identity in YM theory,

[Dµ,Gνλ] + [Dν,Gλµ] + [Dλ,Gµν] = 0, (A.3)

where Dµ = ∂µ − igAµ. The linear term in eρ gives

[Dµ,Gνλ,ρ] − ig[Aµρ,Gνλ] + [Dν,Gλµ,ρ]

−ig[Aνρ,Gλµ] + [Dλ,Gµν,ρ] − ig[Aλρ,Gµν] = 0. (A.4)
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Using explicit form of the operators Dµ,Gµν and Gµν,λ one can independently check the last
identity and get convinced that it holds. Now, if we expand the above equation over g, the
zeroth order gives the Bianchi identity for the free-field strength tensor Fνλ,ρ ,

∂µFνλ,ρ + ∂νFλµ,ρ + ∂λFµν,ρ = 0. (A.5)

These equations impose tight restrictions on the source currents and hence on the nature of
interactions.

Appendix B.

The matrix operator in gravity (3.12) is of dimension 10 × 10 and has the following form:
0 0 0 0 −k2 0 0 −k2 0 0

0 − k2

2 0 0 0 0 − kw
2 0 0 0

0 0 − k2

2 0 0 0 0 0 − kw
2 0

0 0 0 0 kw 0 0 kw 0 0
−k2 0 0 −kw 0 0 0 k2 − w2 0 −w2

0 0 0 0 0 1
2 (−k2 + w2) 0 0 0 0

0 kw
2 0 0 0 0 w2

2 0 0 0
−k2 0 0 −kw k2 − w2 0 0 0 0 −w2

0 0 kw
2 0 0 0 0 0 w2

2 0
0 0 0 0 −w2 0 0 −w2 0 0

(B.1)

and for the antisymmetric tensor field (3.16) it is of dimension 6 × 6,

− k2

2 0 0 0 kw
2 0

0 − k2

2 0 0 0 kw
2

0 0 0 0 0 0
0 0 0 1

2 (−k2 + w2) 0 0

− kw
2 0 0 0 w2

2 0

0 − kw
2 0 0 0 w2

2 .

(B.2)

The matrix operator for non-Abelian tensor gauge theory (3.4) is of dimension 16 × 16 and
has the following explicit form:

0 0 0 0 0 − k2

2 0 0 0 0 − k2

2 0 0 0 0 0

0 −k2 0 0 k2

2 0 0 kω
2 0 0 0 0 0 −kω 0 0

0 0 −k2 0 0 0 0 0 k2

2 0 0 kω
2 0 0 −kω 0

0 0 0 0 0 kω
2 0 0 0 0 kω

2 0 0 0 0 0

0 k2

2 0 0 −k2 0 0 −kω 0 0 0 0 0 kω
2 0 0

− k2

2 0 0 − kω
2 0 0 0 0 0 0 1

2 (k2 − ω2) 0 − kω
2 0 0 − ω2

2

0 0 0 0 0 0 −k2 + ω2 0 0 1
2 (k2 − ω2) 0 0 0 0 0 0

0 − kω
2 0 0 kω 0 0 ω2 0 0 0 0 0 − ω2

2 0 0

0 0 k2

2 0 0 0 0 0 −k2 0 0 −kω 0 0 kω
2 0

0 0 0 0 0 0 1
2 (k2 − ω2) 0 0 −k2 + ω2 0 0 0 0 0 0

− k2

2 0 0 − kω
2 0 1

2 (k2 − ω2) 0 0 0 0 0 0 − kω
2 0 0 − ω2

2

0 0 − kω
2 0 0 0 0 0 kω 0 0 ω2 0 0 − ω2

2 0
0 0 0 0 0 kω

2 0 0 0 0 kω
2 0 0 0 0 0

0 kω 0 0 − kω
2 0 0 − ω2

2 0 0 0 0 0 ω2 0 0

0 0 kω 0 0 0 0 0 − kω
2 0 0 − ω2

2 0 0 ω2 0

0 0 0 0 0 − ω2

2 0 0 0 0 − ω2

2 0 0 0 0 0

(B.3)

and allows us to calculate its rank as a function of momenta.
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